Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 3343-3347, 2013.
Article in Chinese | WPRIM | ID: wpr-238595

ABSTRACT

<p><b>OBJECTIVE</b>To observe the effect of curcumin on nitric oxide (NO) in plasma of atherosclerotic rabbits, activity of constitutive nitric oxide synthase (cNOS) and asymmetric dimethylarginine (ADMA), and discuss curcumin's effect against AS and its correlation with ADMA.</p><p><b>METHOD</b>Thirty-eight male Japanese white rabbits were randomly divided into four groups: the control group (eight rabbits fed with standard diets), the model group (ten rabbits fed with high-fat diets), the low dose curcumin group (ten rabbits fed with high-fat diets and 100 mg . kg-1 d -1 ) and the high dose curcumin group (ten rabbits fed with high-fat diets and 200 mg kg-1 d-1 curcumin). At the end of the 12th week, their plasmas were tested for TC, LDL-C, NO, endothelin (ET) , ADMA and activity of aortic cNOS. Aortic tissues were collected for histological examinations.</p><p><b>RESULT</b>The three groups fed with high-fat diets showed higher plasma ADMA and ET than the control group (P <0. 01) , but with decrease in plasma NO concentration and arterial cNOS activity (P <0. 01). Compared with the model group (P <0. 05) , the curcumin groups showed lower plasma ADMA and ET (P <0. 05), but higher plasma NO concentration and arterial cNOS activity than the model group (P <0. 01). There was no significant difference between the two curcumin groups.</p><p><b>CONCLUSION</b>Curcumin may play an important protective role in AS process by reducing plasma ADMA level. [Key words] atherosclerosis; asymmetric dimethylarginine; crucumin; nitric oxide; nitric oxide synthase</p>


Subject(s)
Animals , Male , Rabbits , Arginine , Blood , Atherosclerosis , Blood , Drug Therapy , Metabolism , Curcumin , Therapeutic Uses , Endothelium, Vascular , Nitric Oxide Synthase , Metabolism
2.
Chinese Journal of Cardiology ; (12): 847-852, 2011.
Article in Chinese | WPRIM | ID: wpr-268303

ABSTRACT

<p><b>OBJECTIVE</b>To observe the effects of ryanodine on rapamycin treated endothelial outgrowth cells (EOCs).</p><p><b>METHODS</b>The mononuclear cells were harvested from umbilical cord blood by Ficoll density gradient centrifugation, then induced into EOCs and expanded in vitro. The endothelial characteristics of EOCs were identified by immunostaining and fluorescent staining. The EOCs were pretreated with or without ryanodine (10 µmol/L) for 1 h, and then treated with or without rapamycin (10 nmol/L) for 24 h. Proliferation was evaluated by CCK8 and migration was measured by Transwell. The protein expression of EOCs was evaluated by immunobloting technique with total eNOS antibody and phospho-eNOS (Thr495) antibody.</p><p><b>RESULTS</b>Compared with control group, the proliferation and migration capacities of EOCs were significantly reduced while the phosphorylation of eNOS (Thr495) protein was significantly upregulated in rapamycin group (P < 0.05), expression of total eNOS was not affected by rapamycin (P > 0.05). Compared with rapamycin group, the proliferation and migration capacities of EOCs were significantly increased and the phosphorylation of eNOS (Thr495) protein was significantly downregulated in ryanodine + rapamycin group (P < 0.05). The proliferation and migration capacities, the phosphorylation of eNOS (Thr495) protein and the expression of total eNOS were not affected by ryanodine alone (P > 0.05).</p><p><b>CONCLUSIONS</b>Rapamycin reduced proliferation and migration capacities while upregulated the phosphorylation of eNOS (Thr495) protein of EOCs and these effects could be partly reversed by cotreatment with ryanodine.</p>


Subject(s)
Humans , Cells, Cultured , Down-Regulation , Drug Synergism , Endothelial Cells , Cell Biology , Metabolism , Nitric Oxide Synthase Type III , Metabolism , Phosphorylation , Ryanodine , Pharmacology , Sirolimus , Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL